【摘要】针对自动机故障诊断过程中振动信号故障特征较难提取的问题,提出了结合形态分量分析(MCA)和总体经验模态分解(EEMD)的自动机故障特征提取方法。根据自动机振动信号组成成分的形态差异,利用形态分量分析方法构建不同的稀疏字典对各组成成分进行分离,消除噪声分量,提取出反映主要故障特征的冲击分量;对所提取的冲击分量进行EEMD分解并计算各IMF分量的样本熵值,以此作为故障特征向量输入基于离子群优化的支持向量机(PSO-SVM)进行识别。通过自动机典型故障诊断试验表明:形态分量分析方法可有效分离出自动机振动信号中的冲击成分;同时,所提出的特征提取方法能够有效地进行自动机故障诊断。
【关键词】
《建筑知识》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中国医疗管理科学》 2015-05-12
《现代制造技术与装备》 2015-06-26
《当代体育科技》 2015-07-07
《中国果菜》 2015-07-08
《重庆高教研究》 2015-06-29
Copyright © 2013-2016 ZJHJ Corporation,All Rights Reserved
发表评论
登录后发表评论 (已发布 0条)点亮你的头像 秀出你的观点