中教数据库 > 火力与指挥控制 > 文章详情

基于形态分量分析和EEMD样本熵的自动机故障诊断

更新时间:2023-05-28

【摘要】针对自动机故障诊断过程中振动信号故障特征较难提取的问题,提出了结合形态分量分析(MCA)和总体经验模态分解(EEMD)的自动机故障特征提取方法。根据自动机振动信号组成成分的形态差异,利用形态分量分析方法构建不同的稀疏字典对各组成成分进行分离,消除噪声分量,提取出反映主要故障特征的冲击分量;对所提取的冲击分量进行EEMD分解并计算各IMF分量的样本熵值,以此作为故障特征向量输入基于离子群优化的支持向量机(PSO-SVM)进行识别。通过自动机典型故障诊断试验表明:形态分量分析方法可有效分离出自动机振动信号中的冲击成分;同时,所提出的特征提取方法能够有效地进行自动机故障诊断。

【关键词】

1126 2页 免费

发表评论

登录后发表评论 (已发布 0条)

点亮你的头像 秀出你的观点

0/500
以上留言仅代表用户个人观点,不代表中教立场
相关文献

推荐期刊

Copyright © 2013-2016 ZJHJ Corporation,All Rights Reserved

京ICP备2021021570号-13

京公网安备 11011102000866号