中教数据库 > 火力与指挥控制 > 文章详情

基于CNN-PCA-DT算法的合成孔径雷达目标识别

更新时间:2023-05-28

【摘要】合成孔径雷达(Synthetic Aperture Radar,SAR)目标识别是SAR图像解译的重要环节,已广泛应用于国防和国民经济领域。在传统的卷积神经网络(Convolutional Neural Network,CNN)的基础上,提出了将CNN,主成分分析(Principle Component Analysis,PCA)和决策树(Decision Tree,DT)相结合的算法,记为CNN-PCA-DT:利用CNN提取出SAR图像的特征向量,再用PCA降维,最后用DT分类器取代CNN中的Softmax分类器实现SAR目标识别。实验结果表明,所提出的算法在MSTAR实测数据集上取得了较高的识别准确率,从而说明了实验的有效性。

【关键词】

1474 2页 免费

发表评论

登录后发表评论 (已发布 0条)

点亮你的头像 秀出你的观点

0/500
以上留言仅代表用户个人观点,不代表中教立场
相关文献

推荐期刊

Copyright © 2013-2016 ZJHJ Corporation,All Rights Reserved

京ICP备2021021570号-13

京公网安备 11011102000866号