【摘要】合成孔径雷达(Synthetic Aperture Radar,SAR)目标识别是SAR图像解译的重要环节,已广泛应用于国防和国民经济领域。在传统的卷积神经网络(Convolutional Neural Network,CNN)的基础上,提出了将CNN,主成分分析(Principle Component Analysis,PCA)和决策树(Decision Tree,DT)相结合的算法,记为CNN-PCA-DT:利用CNN提取出SAR图像的特征向量,再用PCA降维,最后用DT分类器取代CNN中的Softmax分类器实现SAR目标识别。实验结果表明,所提出的算法在MSTAR实测数据集上取得了较高的识别准确率,从而说明了实验的有效性。
【关键词】
《建筑知识》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中国医疗管理科学》 2015-05-12
《铁道运营技术》 2015-07-06
《重庆高教研究》 2015-06-26
《广西广播电视大学学报》 2015-07-01
《长江师范学院学报》 2015-07-06
Copyright © 2013-2016 ZJHJ Corporation,All Rights Reserved
发表评论
登录后发表评论 (已发布 0条)点亮你的头像 秀出你的观点